skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Search for: All records

Creators/Authors contains: "Pavlović, Vladimir B"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Abstract Ceramic/polymer composites can be chemically stable, mechanically strong, and flexible, which make them candidates for electric devices, such as pressure or temperature sensors, energy storage or harvesting devices, actuators, and so forth. Depending on the application, various electrical properties are of importance. Polymers usually have low dielectric permittivity, but increased dielectric permittivity can be achieved by the addition of the ceramic fillers with high dielectric constant. With the aim to enhance dielectric properties of the composite without loss of flexibility, 5 wt% of BaTiO3‐Fe2O3powder was added into a polyvinylidene fluoride matrix. The powder was prepared by different synthesis conditions to produce core/shell structures. The effect of the phase composition and morphology of the BaTiO3‐Fe2O3core/shell filler on the structure and lattice dynamics of the polymer composites was investigated. Based on the results of the thermal analysis, various parameters of ceramic/polymer composites were determined. Differences in the phase composition and morphology of the filler have an influence on the formation of various polyvinylidene fluoride allomorphs and the degree of crystallinity. Furthermore, the dielectric performances of pure polyvinylidene fluoride and the polymer/ceramic composites were measured. 
    more » « less
  2. Abstract Barium titanate (BT) perovskite particles were surface modified by means of mechanical treatment and used as inorganic component in polyvinylidene fluoride (PVDF) based composites. The changes in electrical properties of the composite films with increasing in filler content were followed by dielectric spectroscopy, breakdown strength andD-Emeasurements. A comparison of the properties of the composites prepared with untreated and mechanically activated particles revealed that there is a significant difference in their performances at low filler concentrations (<20 wt%). Introduction of the surface modified ceramic particles into PVDF matrix led to an increase of the dielectric constant without affecting significantly the electrical breakdown strength. In contrast, when as received BT particles were used a filler, both dielectric constants and breakdown strengths of the composite films were lower than the corresponding values observed for the pure PVDF. At higher concentrations, however, the influence of pre-treatment of the filler on the effective electrical properties becomes less significant. The obtained results were discussed in terms of the pronounced crystallization of polarβandγcrystal phases of PVDF in the presence of surface modified BT fillers, which is confirmed by Raman spectroscopy. 
    more » « less
  3. In the search for environmentally friendly materials with a wide range of properties, polymer composites have emerged as a promising alternative due to their multifunctional properties. This study focuses on the synthesis of composite materials consisting of four components: bacterial nanocellulose (BNC) modified with magnetic Fe3O4, and a mixture of BaTiO3 (BT) and polyvinylidene fluoride (PVDF). The BT powder was mechanically activated prior to mixing with PVDF. The influence of BT mechanical activation and BNC with magnetic particles on the PVDF matrix was investigated. The obtained composite films’ structural characteristics, morphology, and dielectric properties are presented. This research provides insights into the relationship between mechanical activation of the filler and structural and dielectric properties in the PVDF/BT/BNC/Fe3O4 system, creating the way for the development of materials with a wide range of diverse properties that support the concept of green technologies. 
    more » « less
  4. The rise of innovation in the electrical industry is driven by the controlled design of new materials. The hybrid materials based on magnetite/nanocellulose are highly interesting due to their various applications in medicine, ecology, catalysis and electronics. In this study, the structure and morphology of nanocellulose/magnetite hybrid nanomaterials were investigated. The effect of nanocellulose loading on the crystal structure of synthesized composites was investigated by XRD and FTIR methods. The presented study reveals that the interaction between the cellulose and magnetic nanoparticles depends on the nanocellulose content. Further, a transition from cellulose II to cellulose I allomorph is observed. SEM and EDS are employed to determine the variation in morphology with changes in component concentrations. By the calculation of magnetic interactions between adjacent Fe3+ and Fe2+ ions within composites, it is determined that ferromagnetic coupling predominates. 
    more » « less